Genetic deafness profile: Hearing rehabilitation and predictive prognostic factors
DOI:
https://doi.org/10.34631/sporl.816Keywords:
deafness, genetic, cochlear implantAbstract
Aims: To characterize the population with genetic deafness, genotype-phenotype correlation and prognostic factors in the decision of rehabilitation treatment.
Material and Methods: Pediatric population referred from the Hearing Rehabilitation to the Medical Genetics consultation, between january-2012 and december-2017, was retrospectively analysed.
Results: 128 children were referred and the genetic study was positive in 47%. The results were suggestive of a genotype-phenotype correlation in the GJB2 gene mutations (p=0,30), being this group the one with best hearing (p=0,57) and linguistic gains (p=0,19) with rehabilitation. The genetic study revealed mutations associated with progressive hearing loss in six patients and identified variants that affect the organ of Corti, predicting cochlear implant (CI) performance.
Conclusions: The etiological confirmation allows to predict the evolution of hearing loss, as observed in the GJB2 gene. Patients with mutations in genes expressed in the membranous labyrinth, with preservation of the spiral ganglion, have a good prognosis with CI.
References
Monteiro L, Subtil J. Otorrinolaringologia Pediátrica. Queluz: CírculoMédico; 2016.
Grupo de Rastreio e Intervenção da Surdez Infantil – GRISI. Recomendações para o Rastreio Auditivo Neonatal Universal (RANU). Acta Pediátrica Port. 2007;38(5):209-214.
Alford RL, Arnos KS, Fox M, Lin JW. et al. American college of medical genetics and genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med. 2014 Apr;16(4):347-55. doi: 10.1038/gim.2014.2.
Snoeckx RL, Huygen PLM, Feldmann D, Marlin S. et al. GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. Am J Hum Genet. 2005 Dec;77(6):945-57. doi: 10.1086/497996.
Cryns K, Orzan E, Murgia A, Moreno F. et al. A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J Med Genet. 2004 Mar;41(3):147-54. doi: 10.1136/jmg.2003.013896.
Manrique M, Cervera-Paz F, Huarte A, Molina M. Prospective long-term auditory results of cochlear implantation in prelinguistically deafened children: the importance of early implantation. Acta Otolaryngol Suppl. 2004 May;(552):55-63. doi: 10.1080/03655230410017148.
Schrauwen I, Helfmann S, Inagaki A, Predoehl F. et al. A Mutation in CABP2, Expressed in Cochlear Hair Cells, Causes Autosomal-Recessive Hearing Impairment. Am J Hum Genet. 2012 Oct 5;91(4):636-45. doi: 10.1016/j.ajhg.2012.08.018.
Yariz KO, Duman D, Seco CZ, Dallman J. et al. Mutations in OTOGL, Encoding the Inner Ear Protein Otogelin-like, Cause Moderate Sensorineural Hearing Loss. Am J Hum Genet. 2012 Nov 2;91(5):872-82. doi: 10.1016/j.ajhg.2012.09.011.
Shahin H, Walsh T, Sobe T, Abu Sa'ed J. et al. Mutations in a Novel Isoform of TRIOBP That Encodes a Filamentous- Actin Binding Protein Are Responsible for DFNB28 Recessive Nonsyndromic Hearing Loss. Am J Hum Genet. 2006 Jan;78(1):144-52. doi: 10.1086/499495.
Friedman T, Liang Y, Weber J, Hinnant J. et al. A gene for congenital, recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17. Nat Genet. 1995 Jan;9(1):86-91. doi: 10.1038/ng0195-86.
Koffler T, Ushakov K, Avraham KB. Genetics of Hearing Loss – Syndromic. Otolaryngol Clin North Am. 2015 Dec;48(6):1041-61. doi: 10.1016/j.otc.2015.07.007.
Stover EH, Borthwick KJ, Bavalia C, Eady N. et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet. 2002 Nov;39(11):796-803. doi: 10.1136/jmg.39.11.796.
Voit T, Lamprecht A, Lenard HG, Goebel HH. Hearing loss in facioscapulohumeral dystrophy. Eur J Pediatr. 1986 Sep;145(4):280-5. doi: 10.1007/BF00439401.
Pandey S, Pandey M. Advances in Genetic Diagnosis and Treatment of Hearing Loss — A Thirst for Revolution. In: Bahmad Jr., editor Update on Hearing Loss. InTech; 2015. doi:10.5772/61218.
Bauer PW, Geers AE, Brenner C, Moog JS. Et al. The Effect of GJB2 Allele Variants on Performance after Cochlear Implantation. Laryngoscope. 2003 Dec;113(12):2135-40. doi: 10.1097/00005537-200312000-00015.
Shearer AE, Eppsteiner RW, Frees K, Tejani V, et al. Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hear Res. 2017 May;348:138-142. doi: 10.1016/j.heares.2017.02.008.
Eppsteiner RW, Shearer AE, Hildebrand MS, Deluca AP. et al. Prediction of Cochlear Implant Performance by Genetic Mutation: The Spiral Ganglion Hypothesis. Hear Res. 2012 Oct;292(1-2):51-8. doi: 10.1016/j.heares.2012.08.007.
Karet FE, Finberg KE, Nelson RD, Nayir A. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999 Jan;21(1):84-90. doi: 10.1038/5022.
Tachibana M, Takeda K, Nobukuni Y. Urabe K. et al. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet. 1996 Sep;14(1):50-4. doi: 10.1038/ng0996-50.
Pater JA, Green J, O’Rielly DD, Griffin A. et al. Novel Usher syndrome pathogenic variants identified in cases with hearing and vision loss. BMC Med Genet. 2019 May 2;20(1):68. doi: 10.1186/s12881-019-0777-z.
Manor U, Disanza A, Grati M, Andrade L. et al. Regulation of stereocilia length by myosin XVa and whirlin depends on the actin-regulatory protein Eps8. Curr Biol. 2011 Jan 25;21(2):167-72. doi: 10.1016/j.cub.2010.12.046.
Kirschhofer K, Kenyon JB, Hoover DM, Franz P. et al. Autosomal-dominant, prelingual, nonprogressive sensorineural hearing loss: localization of the gene (DFNA8) to chromosome 11q by linkage in an Austrian family. Cytogenet Cell Genet. 1998;82(1-2):126-30. doi: 10.1159/000015086.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Portuguese Journal of Otorhinolaryngology and Head and Neck Surgery
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.