Therapeutic algorithm for soft tissue hypertrophy associated with percutaneous bone-anchored hearing implants
DOI:
https://doi.org/10.34631/sporl.1036Keywords:
Osseointegrated implants, BAHA, Skin hypertrophyAbstract
Objectives: The present work aims to make a brief reflection about cutaneous complications of percutaneous bone anchored implants, with special focus on isolated soft tissue hypertrophy, establishing a treatment algorithm.
Study design: This is a retrospective study, in which children who underwent unilateral BAHA, with a minimum follow-up of 5 years and with detailed clinical records, were included. The following data were collected: age, sex, surgical indications, laterality, audiological evaluation, surgical technique and postoperative complications.
Results: Of the 53 children included, 49.1% developed skin complications at some point in the 5 years after the intervention. In 28.3% of the children, peri-implant skin hypertrophy was described, in which the application of the Holgers classification was considered unfeasible. For these cases, treatment algorithm is presented.
Conclusions: Peri-implant skin hypertrophy is one of the most frequently reported complications, so the development of a uniform and standardized therapeutic strategy is essential.
References
Lustig LR, Arts HA, Brackmann DE, Francis HF, Molony T, Megerian CA. et al. Hearing Rehabilitation using the BAHA bone-anchored hearing aid: results in 40 patients. Otol Neurotol. 2001 May;22(3):328-34. doi: 10.1097/00129492-200105000-00010.
Roman S, Nicollas R, Triglia JM. Practice guidelines for bone-anchored hearing aids in children. Eur Ann Otorhinolaryngol Head Neck Dis. 2011 Nov;128(5):253-8. doi: 10.1016/j.anorl.2011.04.005.
Häkansson B, Tjellstrom A, Rosenhall U. Hearing thresholds with direct bone conduction versus conventional bone conduction. Scand Audiol. 1984;13(1):3-13. doi: 10.3109/01050398409076252.
Verstraeten N, Zarowski AJ, Somers T, Riff D, Offeciers EF. Comparison of the audiologic results obtained with the bone anchored hearing aid attached to the headband, the test band, and to the ‘snap’ abutment. Otol Neurotol. 2009 Jan;30(1):70-5. doi: 10.1097/MAO.0b013e31818be97a.
Holgers KM, Thomsen P, Tjellström A, Bjursten LM. Immunohistochemical study of the soft tissue around long-term skin-penetrating titanium implants. Biomaterials. 1995 May;16(8):611-6. doi: 10.1016/0142-9612(95)93858-b.
Holgers KM, Tjellström A, Bjursten LM, Erlandsson BE. Soft tissue reactions around percutaneous implants: a clinical study of soft tissue conditions around skin-penetrating titanium implants for bone-anchored hearing aids. Am J Otol. 1988 Jan;9(1):56-9.
Kruyt IJ, Nelissen RC, Johansson ML, Mylanus EAM, Hol MKS. The IPS-scale: a new soft tissue assessment scale for percutaneous and transcutaneous implants for bone conduction devices. Clin Otolaryngol. 2017 Dec;42(6):1410-1413. doi: 10.1111/coa.12922.
Costa JR, Costa S, Soares T, Feliciano T, Sousa CA, Coutinho MB. Skin and soft tissue complications of bone-anchored hearing aids: Introducing a new classification system. Acta Otorrinolaringol Esp. [Internet] 2022 Mar. Available from: https://doi.org/10.1016/j.otorri.2022.01.001
de Wolf MJ, Hol MK, Huygen PL, Mylanus EA, Cremers CW. Clinical outcome of the simplified surgical technique for BAHA implantation. Otol Neurotol. 2008 Dec;29(8):1100-8. doi: 10.1097/MAO.0b013e31818599b8.
Gordon SA, Coelho DH. Minimally invasive surgery for osseointegrated auditory implants: A comparison of linear versus punch techniques. Otolaryngol Head Neck Surg. 2015 Jun;152(6):1089-93. doi: 10.1177/0194599815571532
Fontaine N, Hemar P, Schultz P, Charpiot A, Debry C. BAHA implant: implantation technique and complications. Eur Ann Otorhinolaryngol Head Neck Dis. 2014 Feb;131(1):69-74. doi: 10.1016/j.anorl.2012.10.006.
Kruyt IJ, Nelissen RC, Johansson ML, Mylanus EAM, Hol MKS. The IPS-scale: a new soft tissue assessment scale for percutaneous and transcutaneous implants for bone conduction devices. Clin Otolaryngol. 2017 Dec;42(6):1410-1413. doi: 10.1111/coa.12922.
Monksfield P, Chapple IL, Matthews JB, Grant MM, Addison O, Reid AP. et al. Biofilm formation on bone-anchored hearing aids. J Laryngol Otol. 2011 Nov;125(11):1125-30. doi: 10.1017/S0022215111002143.
Calon TGA, Trobos M, Johansson ML, van Tongeren J, van der Lugt-Degen M, Janssen AML. et al. Microbiome on the bone-anchored hearing system: a prospective study. Front Microbiol. 2019 Apr 26;10:799. doi: 10.3389/fmicb.2019.00799
Samoy K, Goeteyn M, Lerut B. Laser epilation as a treatment for recurrent infections around bone conduction implant abutment. Ann Otolaryngol Rhinol. [Internet] 2016; 3(7): 1116. Available from: https://www.jscimedcentral.com/Otolaryngology/otolaryngology-3-1116.pdf.
Falcone MT, Kaylie DM, Labadie RF, Haynes DS. Bone-anchored hearing aid abutment skin overgrowth reduction with clobetasol. Otolaryngol Head Neck Surg. 2008 Dec;139(6):829-32. doi: 10.1016/j.otohns.2008.08.021.
Hildrew DM, Guittard JA, Carter JM, Molony TB. Clobetasol's influence on the management and cost of skin overgrowth associated with the bone anchored hearing aid. Ochsner J. Fall 2015;15(3):277-83.
Van Rijswijk JB, Mylanus EA. Intralesional triamcinolone acetonide injection in hypertrophic skin surrounding the percutaneous titanium implant of a bone-anchored hearing aid. J Laryngol Otol. 2008 Dec;122(12):1368-70. doi: 10.1017/S0022215107001673.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Portuguese Journal of Otorhinolaryngology and Head and Neck Surgery
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.